Benchmarking optimization methods for parameter estimation in large kinetic models
نویسندگان
چکیده
منابع مشابه
Estimation Methods for One-Parameter Testlet Models
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE) with the expectation-maximization algorithm in Con...
متن کاملParameter Estimation in Large Causal Independence Models
The assessment of a probability distribution that is associated with a Bayesian network is a challenging task, even if its topology is sparse. Special probability distributions, based on the notion of causal independence, have therefore been proposed, as these allow defining a probability distribution in terms of Boolean combinations of local distributions. However, for very large networks even...
متن کاملParameter Estimation in Large Causal Models
The assessment of a probability distribution that is associated with a Bayesian network is a challenging task, even if its topology is sparse. Special probability distributions, based on the notion of causal independence, have therefore been proposed, as these allow defining a probability distribution in terms of Boolean combinations of local distributions. In Bayesian networks which need to mo...
متن کاملA comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models
Mathematical models in biochemical engineering field are usually composed by nonlinear kinetic equations, where the number of parameters that must be estimated from a set of experimental measurements is usually very high. In these cases, the estimation of the model parameters comprises numerical iterative methods for minimization of the objective function. Classical methods for minimization of ...
متن کاملComputational Methods for Large Distributed Parameter Estimation Problems in 3D
This paper considers problems of distributed parameter estimation from data measurements on solutions of diffusive partial differential equations (PDEs). A nonlinear functional is minimized to approximately recover the sought parameter function (i.e., the model). This functional consists of a data fitting term, involving the solution of a finite volume or finite element discretization of the fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2018
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bty736